Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport.
نویسندگان
چکیده
To go beyond the current structural consensus model of the nuclear pore complex (NPC), we performed cryo-electron tomography of fully native NPCs from Xenopus oocyte nuclear envelopes (NEs). The cytoplasmic face of the NPC revealed distinct anchoring sites for the cytoplasmic filaments, whereas the nuclear face was topped with a massive distal ring positioned above the central pore with indications of the anchoring sites for the nuclear basket filaments and putative intranuclear filaments. The rather "spongy" central framework of the NPC was perforated by an elaborate channel and void system, and at the membrane pore interface it exhibited distinct "handles" protruding into the lumen of the NE. The most variable structural moiety of the NPC was a rather tenuous central plug partially obstructing the central pore. Its mobile character was documented by time-lapse atomic force microscopy. Taken together, the new insights we gained into NPC structure support the notion that the NPC acts as a constrained diffusion pore for molecules and particles without retention signal and as an affinity gate for signal-bearing cargoes.
منابع مشابه
Contribution of Electron Microscopy to the Study of the Nuclear Pore Complex Structure, Composition, and Function
In interphase eukaryotic cells, the nucleus is separated from the cytoplasm by a double nuclear membrane system called the nuclear envelope. The nuclear envelope enables the two cell compartments to have their distinct composition, and separates the genetic machinery from protein synthesis. Molecular exchange between the nucleus and the cytoplasm, however, is essential for keeping eukaryotic ce...
متن کاملArchitecture of the Xenopus nuclear pore complex revealed by three- dimensional cryo-electron microscopy
The nuclear pore complex spans the nuclear envelope and functions as a macromolecular transporter in the ATP-dependent process of nucleocytoplasmic transport. In this report, we present three dimensional (3D) structures for both membrane-associated and detergent-extracted Xenopus NPCs, imaged in frozen buffers by cryo-electron microscopy. A comparison of the differing configurations present in ...
متن کاملStructure and gating of the nuclear pore complex
Nuclear pore complexes (NPCs) perforate the nuclear envelope and allow the exchange of macromolecules between the nucleus and the cytoplasm. To acquire a deeper understanding of this transport mechanism, we analyse the structure of the NPC scaffold and permeability barrier, by reconstructing the Xenopus laevis oocyte NPC from native nuclear envelopes up to 20 Å resolution by cryo-electron tomog...
متن کاملStructural and functional insights into nucleocytoplasmic transport.
The cell nucleus is surrounded by a double membrane system, the nuclear envelope (NE), with the outer nuclear membrane being continuous with the endoplasmic reticulum. Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes, forming aqueous channels that allow free diffusion of small molecules but that also mediate the energy-dependent transport of large macromolecules. The NPC...
متن کاملNuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope
The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 328 1 شماره
صفحات -
تاریخ انتشار 2003